Quantum lattice gas representation of some classical solitons
نویسندگان
چکیده
A quantum lattice gas representation is determined for both the non-linear Schrödinger (NLS) and Korteweg–de Vries (KdV) equations. There is excellent agreement with the solutions from these representations to the exact soliton–soliton collisions of the integrable NLS and KdV equations. These algorithms could, in principle, be simulated on a hybrid quantum-classical computer. 2003 Elsevier Science B.V. All rights reserved. PACS: 52.35.Sb; 05.45.Yv; 42.65.Tg
منابع مشابه
Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملسالیتونهای متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفهای
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied by deriving the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...
متن کاملType-II Quantum Algorithms
We review and analyze the hybrid quantum-classical NMR computing methodology referred to as Type-II quantum computing. We show that all such algorithms considered so far within this paradigm are equivalent to some classical lattice-Boltzmann scheme. We derive a sufficient and necessary constraint on the unitary operator representing the quantum mechanical part of the computation which ensures t...
متن کاملLattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence
A simplified one-dimensional (1D) magnetohydrodynamics (MHD) is solved using a lattice Boltzmann and a quantum lattice gas model. It is shown that the magnetic field decreases the strength of the velocity shock fronts, with marked spikes in the magnetic field strength that gradually broaden in time. There is very good agreement between the lattice Boltzmann model—a representation of non-linear ...
متن کاملrepresentation theorems of $L-$subsets and $L-$families on complete residuated lattice
In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete re...
متن کامل